“AS3.0高级动画编程”学习:第二章转向行为(上)

news/2024/9/21 1:46:06

因为这一章的内容基本上都是涉及向量的,先来一个2D向量类:Vector2D.as (再次强烈建议不熟悉向量运算的童鞋,先回去恶补一下高等数学-07章空间解释几何与向量代数.pdf)

package {import flash.display.Graphics;public class Vector2D {private var _x:Number;private var _y:Number;//构造函数public function Vector2D(x:Number=0,y:Number=0) {_x=x;_y=y;}//绘制向量(以便于显示)public function draw(graphics:Graphics,color:uint=0):void {graphics.lineStyle(0,color);graphics.moveTo(0,0);graphics.lineTo(_x,_y);}//克隆对象public function clone():Vector2D {return new Vector2D(x,y);}//位置归零public function zero():Vector2D {_x=0;_y=0;return this;}//是否在零位置public function isZero():Boolean {return _x==0&&_y==0;}//获得向量的角度public function get angle():Number {return Math.atan2(_y,_x);}//设置向量的模(即大小)public function set length(value:Number):void {var a:Number=angle;_x=Math.cos(a)*value;_y=Math.sin(a)*value;}//获取向量大小的平方public function get lengthSQ():Number {return _x*_x+_y*_y;}//获取向量的模(即大小)public function get length():Number {return Math.sqrt(lengthSQ);}//设置向量的角度public function set angle(value:Number):void {var len:Number=length;_x=Math.cos(value)*len;_y=Math.sin(value)*len;}	//截断向量(设置向量模最大值)public function truncate(max:Number):Vector2D {length=Math.min(max,length);return this;}//交换x,y坐标public function reverse():Vector2D {_x=- _x;_y=- _y;return this;}//定义二个向量的加法运算public function add(v2:Vector2D):Vector2D {return new Vector2D(_x+v2.x,_y+v2.y);}//定义二个向量的减法运算public function subtract(v2:Vector2D):Vector2D {return new Vector2D(_x-v2.x,_y-v2.y);}//向量模的乘法运算public function multiply(value:Number):Vector2D {return new Vector2D(_x*value,_y*value);}//向量模的除法运算public function divide(value:Number):Vector2D {return new Vector2D(_x/value,_y/value);}//判定二个向量(坐标)是否相等public function equals(v2:Vector2D):Boolean {return _x==v2.x&&_y==v2.y;}//设置x轴坐标public function set x(value:Number):void {_x=value;}//返回x轴坐标public function get x():Number {return _x;}//设置y轴坐标public function set y(value:Number):void {_y=value;}//返回y轴坐标public function get y():Number {return _y;}//单位化向量(即设置向量的模为1,不过这里用了一种更有效率的除法运算,从而避免了lengh=1带来的三角函数运算)public function normalize():Vector2D {if (length==0) {_x=1;return this;}//建议大家画一个基本的3,4,5勾股定理的直角三角形即可明白下面的代码var len:Number=length;_x/=len;_y/=len;return this;}		//判定向量是否为单位向量public function isNormalized():Boolean {return length==1.0;}//点乘(即向量的点积)public function dotProd(v2:Vector2D):Number {return _x*v2.x+_y*v2.y;}//叉乘(即向量的矢量积)public function crossProd(v2:Vector2D):Number {return _x*v2.y-_y*v2.x;}//返回二个向量之间的夹角public static function angleBetween(v1:Vector2D,v2:Vector2D):Number {if (! v1.isNormalized()) {v1=v1.clone().normalize();}if (! v2.isNormalized()) {v2=v2.clone().normalize();}return Math.acos(v1.dotProd(v2));//建议先回顾一下http://www.cnblogs.com/yjmyzz/archive/2010/06/06/1752674.html中提到的到夹角公式}//判定给定的向量是否在本向量的左侧或右侧,左侧返回-1,右侧返回1public function sign(v2:Vector2D):int {return perp.dotProd(v2)<0?-1:1;}//返回与本向量垂直的向量(即自身顺时针旋转90度,得到一个新向量)public function get perp():Vector2D {return new Vector2D(- y,x);//建议回顾一下"坐标旋转"}//返回二个矢量末端顶点之间的距离平方public function distSQ(v2:Vector2D):Number {var dx:Number=v2.x-x;var dy:Number=v2.y-y;return dx*dx+dy*dy;}//返回二个矢量末端顶点之间的距离public function dist(v2:Vector2D):Number {return Math.sqrt(distSQ(v2));}//toString方法public function toString():String {return "[Vector2D (x:"+_x+", y:"+_y+")]";}}
}

有几个地方稍加解释:

1、向量夹角的计算

gif.latex?%5Ccos%20(%5CTheta%20)=%5Cfrac%7B%5Cunderset%7Ba%7D%7B%5Crightarrow%7D%5Ccdot%20%5Cunderset%7Bb%7D%7B%5Crightarrow%7D%7D%7B%5Cleft%20%7C%20%5Cunderset%7Ba%7D%7B%5Crightarrow%7D%20%5Cright%20%7C%5Ctimes%5Cleft%20%7C%20%5Cunderset%7Bb%7D%7B%5Crightarrow%7D%20%5Cright%20%7C%20%7D
上图为向量的夹角公式,再来对照一下代码部分:

public static function angleBetween(v1:Vector2D,v2:Vector2D):Number {if (! v1.isNormalized()) {v1=v1.clone().normalize();}if (! v2.isNormalized()) {v2=v2.clone().normalize();}return Math.acos(v1.dotProd(v2));
}

首先对向量v1,v2做了单位化处理,使其变成(模为1的)单位向量,这样夹角公式中的|a|×|b|(即分母)自然也就是1,公式演变成cos(θ)=a.b(即夹角余弦 等于 向量a与b的点乘),然后再对其取反余弦Math.acos,最终得到夹角

2、垂直向量的取得

gif.latex?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20x_%7B1%7D%20=%20x_%7B0%7D%5Ccos(%5Calpha%20)%20-%20y_%7B0%7D%20%5Csin%20(%5Calpha%20)%5C%5C%20y_%7B1%7D%20=%20y_%7B0%7D%20%5Ccos%20(%5Calpha%20)+%20x_%7B0%7D%20%5Csin%20(%5Calpha%20)%5C%5C%20%5Cend%7Bmatrix%7D%5Cright.

上图是坐标(顺时针)旋转的标准公式,如果把α设置为90度,则

gif.latex?%5C%5Cx_%7B1%7D%20=%20-y_%7B0%7D%5C%5C%20y_%7B1%7D%20=%20x_%7B0%7D,即:

public function get perp():Vector2D {return new Vector2D(- y,x);
}

3、判定其它向量是在自身的左侧还是右侧

点击查看下一张

如上图,先取得A的垂直向量,然后计算其它向量跟垂直向量的点积(点乘的公式,在物理上的表现之一为 W = |F|*|S|Cos(θ) ),如果其它向量与该垂直向量的夹角小于90度,点乘的值必为正,反之为负,所以也就能判定左右了(注意:这里的左右是指人站在坐标原点,顺着向量A的方向来看的)

再来定义一个机车类Vehicle.as

package {import flash.display.Sprite;public class Vehicle extends Sprite {//边界行为:是屏幕环绕(wrap),还是反弹{bounce}protected var _edgeBehavior:String=WRAP;//质量protected var _mass:Number=1.0;//最大速度protected var _maxSpeed:Number=10;//坐标protected var _position:Vector2D;//速度protected var _velocity:Vector2D;//边界行为常量public static const WRAP:String="wrap";public static const BOUNCE:String="bounce";public function Vehicle() {_position=new Vector2D  ;_velocity=new Vector2D  ;draw();}protected function draw():void {graphics.clear();graphics.lineStyle(0);graphics.moveTo(10,0);graphics.lineTo(-10,5);graphics.lineTo(-10,-5);graphics.lineTo(10,0);}public function update():void {//设置最大速度_velocity.truncate(_maxSpeed);//根据速度更新坐标向量_position=_position.add(_velocity);			//处理边界行为if (_edgeBehavior==WRAP) {wrap();} else if (_edgeBehavior==BOUNCE) {bounce();}//更新x,y坐标值x=position.x;y=position.y;//处理旋转角度rotation=_velocity.angle*180/Math.PI;}//反弹private function bounce():void {if (stage!=null) {if (position.x>stage.stageWidth) {position.x=stage.stageWidth;velocity.x*=-1;} else if (position.x<0) {position.x=0;velocity.x*=-1;}if (position.y>stage.stageHeight) {position.y=stage.stageHeight;velocity.y*=-1;} else if (position.y<0) {position.y=0;velocity.y*=-1;}}}//屏幕环绕private function wrap():void {if (stage!=null) {if (position.x>stage.stageWidth) {position.x=0;}if (position.x<0) {position.x=stage.stageWidth;}if (position.y>stage.stageHeight) {position.y=0;}if (position.y<0) {position.y=stage.stageHeight;}}			}//下面的都是属性定义public function set edgeBehavior(value:String):void {_edgeBehavior=value;}public function get edgeBehavior():String {return _edgeBehavior;}public function set mass(value:Number):void {_mass=value;}public function get mass():Number {return _mass;}public function set maxSpeed(value:Number):void {_maxSpeed=value;}public function get maxSpeed():Number {return _maxSpeed;}public function set position(value:Vector2D):void {_position=value;x=_position.x;y=_position.y;}public function get position():Vector2D {return _position;}public function set velocity(value:Vector2D):void {_velocity=value;}public function get velocity():Vector2D {return _velocity;}override public function set x(value:Number):void {super.x=value;_position.x=x;}override public function set y(value:Number):void {super.y=value;_position.y=y;}}
}

没有什么新东西,都是以前学到的知识,测试一下上面这二个类:

package {	import flash.display.Sprite;import flash.display.StageAlign;import flash.display.StageScaleMode;import flash.events.Event;public class VehicleTest extends Sprite {private var _vehicle:Vehicle;public function VehicleTest() {stage.align=StageAlign.TOP_LEFT;stage.scaleMode=StageScaleMode.NO_SCALE;_vehicle=new Vehicle  ;addChild(_vehicle);_vehicle.position=new Vector2D(100,100);_vehicle.velocity.length=5;_vehicle.velocity.angle=Math.PI/4;//45度addEventListener(Event.ENTER_FRAME,onEnterFrame);}private function onEnterFrame(event:Event):void {_vehicle.update();}}
}

OK,现在可以进入正题了:(下面是从原书上直接抄过来的)

转向行为(steering behaviors)这一术语,指的是一系列使对象行动起来像似长有智商的算法。这些行为都归于人工智能或人工生命一类,是让对象呈现出拥有生命一般,对如何移动到目的地、捕捉或逃避其它对象、避开障碍物、寻求路径等做出因地适宜的决定。  

一、寻找行为(Seek)

简单点讲,就是角色本身试图移动(包括转向)到目标位置(这个位置可能是固定的,也可能是移动的)。

先定义一个从Vehicle继承的子类:具有转向能力的机车SteeredVehicle.as

package {import flash.display.Sprite;//(具有)转向(行为的)机车public class SteeredVehicle extends Vehicle {private var _maxForce:Number=1;//最大转向力private var _steeringForce:Vector2D;//转向速度public function SteeredVehicle() {_steeringForce = new Vector2D();super();}public function set maxForce(value:Number):void {_maxForce=value;}public function get maxForce():Number {return _maxForce;}override public function update():void {_steeringForce.truncate(_maxForce);//限制为最大转向速度,以避免出现突然的大转身_steeringForce=_steeringForce.divide(_mass);//惯性的体现_velocity=_velocity.add(_steeringForce);_steeringForce = new Vector2D();super.update();}}
}

代码不难理解:仅增加了最大转向力maxForce(主要是为了防止机车一瞬间就突然移动到目标位置,会引起视觉上的动画不连贯);另外对update做了重载处理,在更新机车x,y坐标及朝向(即rotation)之前,累加了转向速度并考虑到了物体的惯性。

再来考虑“寻找(seek)”行为,先看下面这张图:

5542838620100708162318077_640.jpg

根据向量运算,可以先得到机车期望的理想速度(desireVolocity)--注:如果用这个速度行驶,物体立马就能到达目标点。当然我们要体现物体是逐渐靠近目标点的,所以显然不可能用理想速度前行,而是要计算出转向速度force,最终再把转向速度force叠加到自身的速度_velocity上,这样机车就能不断向目标点移动了。

//寻找(Seek)行为
public function seek(target: Vector2D):void {var desiredVelocity:Vector2D=target.subtract(_position);desiredVelocity.normalize();desiredVelocity=desiredVelocity.multiply(_maxSpeed);//注:这里的_maxSpeed是从父类继承得来的var force:Vector2D=desiredVelocity.subtract(_velocity);_steeringForce=_steeringForce.add(force);
}

把这段代码加入到SteeredVehicle.as中就能让SteeredVehicle类具有seek行为,下面是测试代码:

package {import SteeredVehicle;import Vector2D;import flash.display.Sprite;import flash.display.StageAlign;import flash.display.StageScaleMode;import flash.events.Event;public class SeekTest extends Sprite {private var _vehicle:SteeredVehicle;public function SeekTest() {stage.align=StageAlign.TOP_LEFT;stage.scaleMode=StageScaleMode.NO_SCALE;_vehicle = new SteeredVehicle();addChild(_vehicle);addEventListener(Event.ENTER_FRAME, onEnterFrame);}private function onEnterFrame(event:Event):void {_vehicle.seek(new Vector2D(mouseX, mouseY));//以当前鼠标位置为目标点_vehicle.update();}}
}

二、避开(flee)行为

它跟寻找(seek)行为正好是相反的,可以通俗的理解为:“既然发现了目标,那么就调头逃跑吧”,所以代码上只要改一行即可

//避开(flee)行为
public function flee(target: Vector2D):void {var desiredVelocity:Vector2D=target.subtract(_position);desiredVelocity.normalize();desiredVelocity=desiredVelocity.multiply(_maxSpeed);var force:Vector2D=desiredVelocity.subtract(_velocity);_steeringForce=_steeringForce.subtract(force);//这是唯一与seek行为不同的地方,一句话解释:既然发现了目标,那就调头就跑吧!
}

同样,把上述代码加入到SteeredVehicle.as中就能让SteeredVehicle类具有flee行为,测试代码:

package {import SteeredVehicle;import Vector2D;import flash.display.Sprite;import flash.display.StageAlign;import flash.display.StageScaleMode;import flash.events.Event;public class FleeTest extends Sprite {private var _vehicle:SteeredVehicle;public function FleeTest() {stage.align=StageAlign.TOP_LEFT;stage.scaleMode=StageScaleMode.NO_SCALE;_vehicle = new SteeredVehicle();_vehicle.position = new Vector2D(stage.stageWidth/2,stage.stageHeight/2);_vehicle.edgeBehavior = Vehicle.BOUNCE;addChild(_vehicle);addEventListener(Event.ENTER_FRAME, onEnterFrame);}private function onEnterFrame(event:Event):void {_vehicle.flee(new Vector2D(mouseX, mouseY));//避开鼠标当前位置_vehicle.update();}}
}

seek行为与flee行为组合起来,可以完成类似“警察抓小偷”的效果

package {import SteeredVehicle;import Vector2D;import Vehicle;import flash.display.Sprite;import flash.display.StageAlign;import flash.display.StageScaleMode;import flash.events.Event;import flash.text.TextField;import flash.text.TextFormat;public class SeekFleeTest1 extends Sprite {private var _seeker:SteeredVehicle;//寻找者(可理解为:警察)private var _fleer:SteeredVehicle;//躲避者(事理解为:小偷)private var _seekerSpeedSlider:SimpleSlider ;//警察的最大速度控制滑块private var _txtSeekerMaxSpeed:TextField;private var _fleerSpeedSlider:SimpleSlider ;//小偷的最大速度控制滑块private var _txtFleerMaxSpeed:TextField;public function SeekFleeTest1() {stage.align=StageAlign.TOP_LEFT;stage.scaleMode=StageScaleMode.NO_SCALE;_seeker = new SteeredVehicle(0xff0000);_seeker.position=new Vector2D();_seeker.edgeBehavior=Vehicle.BOUNCE;addChild(_seeker);_seeker.maxSpeed = 5;_fleer = new SteeredVehicle(0x0000ff);_fleer.position=new Vector2D(stage.stageWidth*Math.random(),stage.stageHeight*Math.random());_fleer.edgeBehavior=Vehicle.BOUNCE;addChild(_fleer);addEventListener(Event.ENTER_FRAME, onEnterFrame);addSpeedControl();}//添加速度控制组件private function addSpeedControl():void{_seekerSpeedSlider = new SimpleSlider(5,25,10);_seekerSpeedSlider.rotation = 90;_seekerSpeedSlider.x = 150;_seekerSpeedSlider.y = 20;_seekerSpeedSlider.backColor = _seekerSpeedSlider.backBorderColor = _seekerSpeedSlider.handleColor = _seekerSpeedSlider.handleBorderColor =  0xff0000;addChild(_seekerSpeedSlider);_seekerSpeedSlider.addEventListener(Event.CHANGE,onSeekerSpeedChange); _txtSeekerMaxSpeed = new TextField();var _tfseeker:TextFormat = new TextFormat();_tfseeker.color = 0xff0000;_txtSeekerMaxSpeed.defaultTextFormat = _tfseeker;_txtSeekerMaxSpeed.text = "10";addChild(_txtSeekerMaxSpeed);_txtSeekerMaxSpeed.y = _seekerSpeedSlider.y -6;_txtSeekerMaxSpeed.x = _seekerSpeedSlider.x +3;_fleerSpeedSlider = new SimpleSlider(5,25,10);_fleerSpeedSlider.rotation = 90;_fleerSpeedSlider.x = 480;_fleerSpeedSlider.y = 20;_fleerSpeedSlider.backColor = _fleerSpeedSlider.backBorderColor = _fleerSpeedSlider.handleColor = _fleerSpeedSlider.handleBorderColor =  0x0000ff;addChild(_fleerSpeedSlider);_fleerSpeedSlider.addEventListener(Event.CHANGE,onFleerSpeedChange); _txtFleerMaxSpeed = new TextField();			var _tffleer:TextFormat = new TextFormat();_tffleer.color = 0x0000ff;			_txtFleerMaxSpeed.defaultTextFormat = _tffleer;_txtFleerMaxSpeed.text = "10";addChild(_txtFleerMaxSpeed);_txtFleerMaxSpeed.y = _fleerSpeedSlider.y -6;_txtFleerMaxSpeed.x = _fleerSpeedSlider.x +3;}function onSeekerSpeedChange(e:Event):void{_seeker.maxSpeed = _seekerSpeedSlider.value;_txtSeekerMaxSpeed.text = _seekerSpeedSlider.value.toString();}function onFleerSpeedChange(e:Event):void{_fleer.maxSpeed = _fleerSpeedSlider.value;_txtFleerMaxSpeed.text = _fleerSpeedSlider.value.toString();}private function onEnterFrame(event:Event):void {_seeker.seek(_fleer.position);//警察 抓 小偷_fleer.flee(_seeker.position);//小偷 躲 警察_seeker.update();_fleer.update();}		}
}

调整红色滑块和蓝色滑块,可改变seeker与fleer的最大速度。(注:代码中的SimpleSlider在Flash/Flex学习笔记(46):正向运动学中能找到) 如果愿意,您还可以加入碰撞检测,比如当“警察”抓住“小偷”时,显示一个提示:“小样,我抓住你了!”

如果加入更多的物体,比如A,B,C三个,让A追逐B同时躲避C,B追逐C同时躲避A,C追逐A同时躲避B,将是下面这副模样:

package {import flash.display.Sprite;import flash.display.StageAlign;import flash.display.StageScaleMode;import flash.events.Event;public class SeekFleeTest2 extends Sprite {private var _vehicleA:SteeredVehicle;private var _vehicleB:SteeredVehicle;private var _vehicleC:SteeredVehicle;public function SeekFleeTest2() {stage.align=StageAlign.TOP_LEFT;stage.scaleMode=StageScaleMode.NO_SCALE;_vehicleA=new SteeredVehicle(0xff0000)  ;_vehicleA.position=new Vector2D(stage.stageWidth*Math.random(),stage.stageHeight*Math.random());_vehicleA.edgeBehavior=Vehicle.BOUNCE;addChild(_vehicleA);_vehicleB=new SteeredVehicle(0x0000ff)  ;_vehicleB.position=new Vector2D(stage.stageWidth*Math.random(),stage.stageHeight*Math.random());_vehicleB.edgeBehavior=Vehicle.BOUNCE;addChild(_vehicleB);_vehicleC=new SteeredVehicle(0x00ff00)  ;_vehicleC.position=new Vector2D(stage.stageWidth*Math.random(),stage.stageHeight*Math.random());_vehicleC.edgeBehavior=Vehicle.BOUNCE;addChild(_vehicleC);addEventListener(Event.ENTER_FRAME,onEnterFrame);}private function onEnterFrame(event:Event):void {//A追求B,躲避C_vehicleA.seek(_vehicleB.position);_vehicleA.flee(_vehicleC.position);			//B追求C,躲避A_vehicleB.seek(_vehicleC.position);_vehicleB.flee(_vehicleA.position);//C追求A,躲避B_vehicleC.seek(_vehicleA.position);_vehicleC.flee(_vehicleB.position);_vehicleA.update();_vehicleB.update();_vehicleC.update();}}
}

Flash动画的边界,犹如人世间的一张网,将你我他都罩住,我们都在追寻一些东西,同时也在逃避一些东西,于是乎:爱我的人我不爱,我爱的人爱别人······ 现实如此,程序亦如此。

三、到达(arrive)行为

到达行为其实跟寻找行为很相似,区别在于:寻找行为发现目标后,不断移动靠近目标,但速度不减,所以会出现最终一直在目标附近二头来回跑,停不下来。而到达行为在靠近目标时会慢慢停下来,最终停在目标点。(这个咋这么熟悉?对了,这就是以前学习过来的缓动动画,详见Flash/Flex学习笔记(38):缓动动画)

//到达(arrive)行为
public function arrive(target: Vector2D):void {var desiredVelocity:Vector2D=target.subtract(_position);desiredVelocity.normalize();var dist:Number=_position.dist(target);if (dist>_arrivalThreshold) {desiredVelocity=desiredVelocity.multiply(_maxSpeed);} else {desiredVelocity=desiredVelocity.multiply(_maxSpeed*dist/_arrivalThreshold);}var force:Vector2D=desiredVelocity.subtract(_velocity);_steeringForce=_steeringForce.add(force);
}

当然这里的比例因子:_arrivalThreshold需要先定义,同时为了方便动态控制,还要对外以属性的形式暴露出来

private var _arrivalThreshold:Number=100;//到达行为的距离阈值(小于这个距离将减速)public function set arriveThreshold(value: Number):void {_arrivalThreshold=value;
}public function get arriveThreshold():Number {return _arrivalThreshold;
}

把上面这二段代码加入SteeredVehicle.as中,然后测试一把:

package {import flash.display.Sprite;import flash.display.StageAlign;import flash.display.StageScaleMode;import flash.events.Event;public class ArriveTest extends Sprite {private var _vehicle:SteeredVehicle;public function ArriveTest() {stage.align=StageAlign.TOP_LEFT;stage.scaleMode=StageScaleMode.NO_SCALE;_vehicle=new SteeredVehicle  ;addChild(_vehicle);addEventListener(Event.ENTER_FRAME,onEnterFrame);}private function onEnterFrame(event:Event):void {_vehicle.arrive(new Vector2D(mouseX,mouseY));_vehicle.update();}}
}

四、追捕(pursue)行为

追捕跟寻找很类似,不过区别在于:寻找(seek)是发现目标后,以预定的速度向目标靠拢,不管目标跑得多快还是多慢,所以如果目标比寻找者(seeker)要移动得快,seeker永远是追不上的;而追捕行为是要在目标前进的路上,提前把目标拦截到,也可以理解为先预定一个(target前进路线上的)目标位置,然后再以寻找行为接近该位置,所以只要预定目标位置计算得合理,就算追捕者的速度要慢一点儿,也是完全有可能把目标给抓住的。

554283862010070914301506_640.jpg

代码:

//追捕(pursue)行为
public function pursue(target:Vehicle):void {var lookAheadTime:Number=position.dist(target.position)/_maxSpeed;//假如目标不动,追捕者开足马力赶过去的话,计算需要多少时间var predictedTarget:Vector2D=target.position.add(target.velocity.multiply(lookAheadTime));seek(predictedTarget);
}

解释:假如目标不动的话,我们先计算二者之间的距离,然后以最大速度狂奔过去,大概需要lookAheadTime这么长时间,然后根据这个时间,得到预定的目标位置,再以该位置为目标,寻找(seek)过去。(当然这种算法并不精确,但是处理起来比较简单,重要的是:配合Enter_Frame事件后,它确实管用!)

测试代码:

package {import flash.display.Sprite;import flash.display.StageAlign;import flash.display.StageScaleMode;import flash.events.Event;import flash.events.MouseEvent;import flash.text.TextField;public class PursueTest extends Sprite {private var _seeker:SteeredVehicle;private var _pursuer:SteeredVehicle;private var _target:Vehicle;private var _isRun:Boolean = false;private var _text:TextField;public function PursueTest() {stage.align=StageAlign.TOP_LEFT;stage.scaleMode=StageScaleMode.NO_SCALE;_seeker = new SteeredVehicle(0x0000ff);				addChild(_seeker);_pursuer = new SteeredVehicle(0xff0000);			addChild(_pursuer);_target = new Vehicle(0x000000);			_target.velocity.length=15;//目标对象跑得快一点,这样才能看出区别addChild(_target);		_seeker.edgeBehavior = _target.edgeBehavior = _pursuer.edgeBehavior = Vehicle.BOUNCE;stage.addEventListener(MouseEvent.CLICK,stageClick);_text = new TextField();_text.text = "点击鼠标开始演示";_text.height = 20;_text.width = 100;			_text.x = stage.stageWidth/2 - _text.width/2;_text.y = stage.stageHeight/2 - _text.height/2;addChild(_text);}private function onEnterFrame(event:Event):void {_seeker.seek(_target.position);_seeker.update();_pursuer.pursue(_target);_pursuer.update();_target.update();}private function stageClick(e:MouseEvent):void{			if (!_isRun){_target.position=new Vector2D(stage.stageWidth/2,stage.stageHeight/2);addEventListener(Event.ENTER_FRAME, onEnterFrame);				_isRun = true;removeChild(_text);				}else{removeEventListener(Event.ENTER_FRAME, onEnterFrame);_isRun = false;_target.position = _seeker.position = _pursuer.position = new Vector2D(0,0);addChild(_text);_text.text = "点击鼠标重新开始";				}			}}
}

这里为了区别“追捕行为”与"寻找行为",我们同时加入了追捕者(_pursuer-红色)与寻找者(_seeker-蓝色),通过下面的演示可以看出,(红色)追捕者凭借算法上的优势,始终能更接近目标。

五、躲避(evade)行为

躲避跟追捕正好相反,可以理解为:如果我有可能挡在目标前进的路线上了,我就提前回避,让开这条道。(俗话:好狗不挡道)

//躲避(evade)行为
public function evade(target: Vehicle):void {var lookAheadTime:Number=position.dist(target.position)/_maxSpeed;var predictedTarget:Vector2D=target.position.add(target.velocity.multiply(lookAheadTime));flee(predictedTarget);//仅仅只是这里改变了而已
}

把前面学到的这些个行为放在一起乱测一通吧:

package {import flash.display.Sprite;import flash.display.StageAlign;import flash.display.StageScaleMode;import flash.events.Event;import flash.events.MouseEvent;import flash.text.TextField;public class PursueEvadeTest extends Sprite {private var _pursuer:SteeredVehicle;private var _evader:SteeredVehicle;private var _target:SteeredVehicle;private var _seeker:SteeredVehicle;private var _fleer:SteeredVehicle;private var _pursuer2:SteeredVehicle;private var _evader2:SteeredVehicle;private var _text:TextField;private var _isRun:Boolean = false;public function PursueEvadeTest() {stage.align=StageAlign.TOP_LEFT;stage.scaleMode=StageScaleMode.NO_SCALE;_pursuer=new SteeredVehicle(0xff0000);addChild(_pursuer);_evader=new SteeredVehicle(0x00ff00);			addChild(_evader);_target=new SteeredVehicle(0x000000);_target.velocity.length=15;			addChild(_target);_seeker=new SteeredVehicle(0xff00ff);addChild(_seeker);_fleer=new SteeredVehicle(0xffff00);			addChild(_fleer);_pursuer2 = new SteeredVehicle();addChild(_pursuer2);_evader2 = new SteeredVehicle();			addChild(_evader2);_evader2.edgeBehavior = _pursuer2.edgeBehavior = _target.edgeBehavior = _evader.edgeBehavior = _pursuer.edgeBehavior = _fleer.edgeBehavior = _seeker.edgeBehavior = Vehicle.BOUNCE;_text = new TextField();_text.text="点击鼠标开始演示";_text.height=20;_text.width=100;_text.x=stage.stageWidth/2-_text.width/2;_text.y=stage.stageHeight/2-_text.height/2;addChild(_text);stage.addEventListener(MouseEvent.CLICK,stageClick);}private function stageClick(e:MouseEvent):void {if (! _isRun) {_target.position=new Vector2D(stage.stageWidth/2,stage.stageHeight/2);_fleer.position=new Vector2D(400,300);_evader2.position=new Vector2D(400,200);_evader.position=new Vector2D(400,100);addEventListener(Event.ENTER_FRAME, onEnterFrame);_isRun=true;removeChild(_text);} else {_pursuer2.position =_evader2.position = _evader.position = _pursuer.position = _target.position=_seeker.position=_pursuer.position=	new Vector2D(0,0);removeEventListener(Event.ENTER_FRAME, onEnterFrame);_isRun=false;				addChild(_text);_text.text="点击鼠标重新开始";}}private function onEnterFrame(event:Event):void {_seeker.seek(_target.position);_fleer.flee(_target.position);_pursuer.pursue(_target);_evader.evade(_target);_pursuer2.pursue(_evader2);_evader2.evade(_pursuer2);_target.update();_seeker.update();_pursuer.update();_fleer.update();_evader.update();_pursuer2.update();_evader2.update();}}
}

对于这个示例,也许看不出”避开(flee)“与“躲避(evade)”的区别,反正都是不挡道嘛,没关系,下面会有机会看到区别的

六、漫游(wander)行为

顾名思义,就是要让物体在屏幕上漫不经心的闲逛。可能大家首先想到的是让速度每次随机改变一些(类似布朗运动),但很快您就会发现这样做的结果:物体象抽风一样在屏幕上乱动,一点都不连续,体现不出“漫不经心”闲逛的特征。所以我们需要一种更为平滑的处理算法:

2010070920560914.png

如上图,先在物体运动的正前方,画一个指定半径的圈,然后让向量offset每次随机旋转一个小小的角度,这样最终能得到转向力向量force=center+offset,最终把向量force叠加到物体的速度上即可.

private var _wanderAngle:Number=0;
private var _wanderDistance:Number=10;
private var _wanderRadius:Number=5;
private var _wanderRange:Number=1;//漫游
public function wander():void {var center:Vector2D=velocity.clone().normalize().multiply(_wanderDistance);var offset:Vector2D=new Vector2D(0);offset.length=_wanderRadius;offset.angle=_wanderAngle;_wanderAngle+=(Math.random()-0.5)*_wanderRange;var force:Vector2D=center.add(offset);_steeringForce=_steeringForce.add(force);
}public function set wanderDistance(value:Number):void {_wanderDistance=value;
}public function get wanderDistance():Number {return _wanderDistance;
}public function set wanderRadius(value:Number):void {_wanderRadius=value;
}public function get wanderRadius():Number {return _wanderRadius;
}public function set wanderRange(value:Number):void {_wanderRange=value;
}public function get wanderRange():Number {return _wanderRange;
}

虽然这次增加的代码看上去比较多,但是大部分是用于封装属性的,关键的代码并不难理解。好了,做下基本测试:

package {	import flash.display.Sprite;import flash.display.StageAlign;import flash.display.StageScaleMode;import flash.events.Event;public class WanderTest extends Sprite {private var _vehicle:SteeredVehicle;public function WanderTest() {stage.align=StageAlign.TOP_LEFT;stage.scaleMode=StageScaleMode.NO_SCALE;_vehicle = new SteeredVehicle();_vehicle.maxSpeed = 3;_vehicle.wanderDistance = 50;_vehicle.position=new Vector2D(200,200);//_vehicle.edgeBehavior = Vehicle.BOUNCE;addChild(_vehicle);addEventListener(Event.ENTER_FRAME, onEnterFrame);}private function onEnterFrame(event:Event):void {_vehicle.wander();_vehicle.update();}}
}

如果让漫游行为跟前面提到的行为组合,效果会更好一些:

package {import flash.display.Sprite;import flash.display.StageAlign;import flash.display.StageScaleMode;import flash.events.Event;import flash.events.MouseEvent;import flash.text.TextField;public class FleeEvadeWanderTest extends Sprite {private var _pursuer:SteeredVehicle;private var _evader:SteeredVehicle;private var _target:SteeredVehicle;private var _seeker:SteeredVehicle;private var _fleer:SteeredVehicle;		private var _text:TextField;private var _isRun:Boolean = false;public function FleeEvadeWanderTest() {stage.align=StageAlign.TOP_LEFT;stage.scaleMode=StageScaleMode.NO_SCALE;			_evader=new SteeredVehicle(0x00ff00);//躲避者(绿色)			addChild(_evader);_target=new SteeredVehicle(0x000000);//目标(黑色)			_target.velocity.length = 20;addChild(_target);		_fleer=new SteeredVehicle(0xffff00);//避开者(黄色)			addChild(_fleer);_target.edgeBehavior =  _evader.edgeBehavior =  _fleer.edgeBehavior = Vehicle.BOUNCE;_text = new TextField();_text.text="点击鼠标开始演示";_text.height=20;_text.width=100;_text.x=stage.stageWidth/2-_text.width/2;_text.y=stage.stageHeight/2-_text.height/2;addChild(_text);stage.addEventListener(MouseEvent.CLICK,stageClick);}private function stageClick(e:MouseEvent):void {if (! _isRun) {_target.position=new Vector2D(50,50);_evader.position = _fleer.position=new Vector2D(stage.stageWidth/2,stage.stageHeight/2);				addEventListener(Event.ENTER_FRAME, onEnterFrame);_isRun=true;removeChild(_text);} else {_evader.position = _target.position=_fleer.position=new Vector2D(0,0);removeEventListener(Event.ENTER_FRAME, onEnterFrame);_isRun=false;				addChild(_text);_text.text="点击鼠标重新开始";}}private function onEnterFrame(event:Event):void {_target.wander();			_fleer.flee(_target.position);			_evader.evade(_target);_target.update();			_fleer.update();_evader.update();}}
}

前面提到了flee(避开)与evade(躲避)很难看出区别,但在这个示例里,大概能看出一些细节上的些许不同:flee算法是以目标当前的位置为做基点避开的,而evade是以目标前进方向上未来某个时时间点的位置做为基点避开的,所以相对而言,(绿色的)evader更有前瞻性--即所谓的先知先觉,而(黄色的)fleer只是见知见觉,最终在视觉效果上,evader总是希望跟目标以反方向逃开(这样能躲得更远,更安全一点)。

注:博客园的nasa(微软MVP),对于本章内容也有相应的Sliverlight实现,推荐大家对照阅读。

 

转载于:https://www.cnblogs.com/yjmyzz/archive/2010/07/07/1773140.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.pgtn.cn/news/17692.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈,一经查实,立即删除!

相关文章

Python,Map结合的可视化工具pyecharts实现地图及3D地图的绘制

Python,Map结合的可视化工具pyecharts实现地图及3D地图的绘制 1. 安装2. 基础Map图3. 3DMap图参考这篇博客将介绍Python与Echarts结合的轮子:pyecharts,实现地图集3D地图的绘制。 1. 安装 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts 2. 基础Map图…

Urllib库函数、代理、爬取案例

Urllib库函数、代理、爬取案例 urllib库-urlopen函数用法 from urllib import request resprequest.urlopen(http://www.baidu.com) print(resp.read())部分结果 b<!DOCTYPE html><!--STATUS OK-->\n\n\n <html><head><meta http-equiv"…

线性代数——行列式

文章目录二阶行列式与三阶行列式全排列和对换n阶行列式的定义行列式的性质行列式按行&#xff08;列&#xff09;展开二阶行列式与三阶行列式 全排列和对换 n阶行列式的定义 行列式的性质 行列式按行&#xff08;列&#xff09;展开

线性代数--矩阵

线性代数--矩阵线性代数--矩阵线性方程组和矩阵矩阵的运算可逆矩阵克拉默法则线性代数–矩阵 线性方程组和矩阵 矩阵的运算 可逆矩阵 克拉默法则

线性代数--矩阵、向量

线性代数线性代数矩阵及其运算矩阵分块法矩阵的初等变换于线性方程组矩阵的初等变换矩阵的秩线性方程组的解向量组的线性相关性向量组及其线性组合向量组的线性相关性线性代数 矩阵及其运算 矩阵分块法 矩阵的初等变换于线性方程组 矩阵的初等变换 矩阵的秩 线性方程组的解 …

线性代数向量笔记

文章目录线性代数向量向量的基本概念向量组的线性相关性与线性表示向量组的秩线性代数 向量 向量的基本概念 向量组的线性相关性与线性表示 向量组的秩

使用OpenCV在图像和视频流中执行基于深度学习的超级分辨率

这篇博客将介绍如何使用OpenCV在图像和视频流中执行基于深度学习的超级分辨率。 深度神经网络中有与超分辨率相关的 预训练好的模型与OpenCV兼容超分辨率是指放大图像后,图像的质量基本没有损失,依然清晰。 OpenCV的超分辨率功能实际上“隐藏”在一个名为dnn_superres的子模…

微软SCRUM 1.0流程模板在中文版TFS2010上无法创建项目的解决办法(续)

原文&#xff1a; http://www.almnetworks.net/zh-CN/post/2010/08/04/Microsoft-Visual-Studio-Scrum-10-Template-on-Chinese-Version-of-TFS.aspx 经过我的进一步测试&#xff0c;发现以上步骤不能解决这个问题&#xff0c;但是我找到了一个可以暂时保证我们使用SCRUM模板的…